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Period doubling and other complex bifurcations in
non-isothermal chemical systems

By S.K.Scortr anD A. S. ToMLIN
School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.

Chemical feedback in the form of chain-branching or autocatalysis can give rise to
oscillatory behaviour in very simple models involving only two variables. Many
chemical reactions are also exothermic. This chemical heat release can give rise to
self-heating and hence to thermal feedback, where the temperature varies as well as
the concentrations. When chemical and thermal feedback are coupled, the range of
responses that can be observed are increased dramatically. These features are
demonstrated through the simple non-isothermal autocatalator scheme

P-A rate = k, p,
A+2B-—->3B rate = k, ab?,
A-B rate = k,a,

B~ C+heat rate = k,b.

At its simplest, the reaction can be steady or can show simple period-1 oscillations.
More complex oscillations, with higher periodicity appear as the experimental
conditions are varied, with period doubling, mixed-mode oscillations and aperiodicity
(chemical chaos).

1. Introduction

Chemical reactions with two variables can exhibit multiple stationary-states and
sustained oscillations in flow systems (Gray & Scott 1986). The oscillations in such
systems are always simple, period-1 solutions. After transients have decayed each
excursion has exactly the same period and amplitude as the next. There is a growing
body of experimental evidence in chemistry for most complex, higher-order periodic
(bursting) patterns and even aperiodic (chaotic) states. Examples include the
solution-phase Belousov-Zhabotinsky reaction (Argoul et al. 1987 ; Hudson & Mankin
1981; Hudson & Rdossler 1984; Maselko & Swinney 1986; Schmitz et al. 1977;
Sorensen 1974), gas-phase combustion systems (Gray et al. 1981a,b, 1987),
heterogeneous catalysis (Chang 1986 ; Jaeger et al. 1986 ; Moller et al. 1986 ; Wicke &
Onken 1986) and electrodissolution reactions (Albahadily et al. 1989; Bassett &
Hudson 1988, 1989; Lev et al. 1988; Schell & Albahadily 1989).

These more complex waveforms cannot arise with only two variables, but are
characteristic of many three-variable systems. In this paper we examine at least
some of the generic bifurcations in three-variable schemes, again exploiting a simple

Phil. Trans. R. Soc. Lond. A (1990) 332, 51-68 Printed in Great Britain
51 )

Y
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to 24

Philosophical Transactions: Physical Sciences and Engineering. NIN®IN
WWWw.jstor.org


http://rsta.royalsocietypublishing.org/

JA \
)
P 9

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

P

A \

Y |

yi

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

52 S. K. Scott and A. S. Tomlin

model based on cubic autocatalysis. We study a thermodynamically closed reactor
with no exchange of mass to the surroundings. Species A and B are intermediates in
the conversion of a relatively stable reactant P to a final product C. The model
scheme is

P—-A rate = k, p, (0)
A+2B-3B rate = k, ab®, (1)
A-B rate = k,a, (3)
B-C rate = k,b. (2)

(The numbering is chosen for consistency with Gray et al. (1987).) As well as the
initial reaction in which species A is produced from the first-order decay of the
precursor, an additional uncatalysed conversion of A to the autocatalyst B has been
included in the model. The implications of this isothermal scheme have been
reviewed in detail elsewhere (Merkin et al. 1986).

Oscillations in such a system will only be transient. However, with the so-called
pool chemical approximation, the concentration of the reactant P is assumed to be
large and to vary only slowly. We will return to this later, but with the approximation
P = p, = const., the model has just two independent concentrations, @ and b. The
pool chemical approximation also allows this system to have time-independent
stationary state and sustained oscillatory solutions, and allows the techniques of
local stability and Hopf bifurcation analysis to be applied directly.

Most spontaneous chemical reactions are to some extent exothermic (there are, of
course, important exceptions to this statement). Similarly, most experimental
apparatus does not have perfect heat transfer, so it is reasonable to assume that there
may be some self-heating of the reacting mixture caused by the chemical heat
release. The rates of chemical reactions are frequently sensitive to the local
temperature and reaction rate ‘constants’ often show an Arrhenius temperature
dependence k = A e E/ET We shall therefore extend the isothermal system to a three
variable system where the temperature excess will be the third variable. The extra
coupling of thermal effects will be seen to have a dramatic effect on the dynamical
behaviour of the system in some situations.

Rather than attempting the most general description, assigning an exothermicity
to each reaction step and allowing all four rate constants to be temperature
dependent, we look for the simplest extension. In reaction schemes involving reactive
intermediates, the most significantly exothermic are the ‘termination steps’ such as
step (2) above. The most highly temperature sensitive are those with the highest
activation energy; initiation steps such as (0). Thus, here we assume step (2) is
exothermic with @ = —AH > 0 and k, has an Arrhenius form.

2. Governing equations, dimensionless quantities and
the pool chemical approximation

The reaction rate equations for the concentrations of the three species P, A and B
are

dp/dt = —k,p, (4)
da/dt =kyp—k,ab*—k;a, (5)
db/dt = k,ab*+kya—k,b. (6)

Phil. Trans. R. Soc. Lond. A (1990)
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Non-isothermal chemical systems 53

When we wish to include the effects of the reaction exothermicity, we allow
k, = ko(T) and also require the heat balance equation

Ve, codT/dt = VQleyb— yS(T—T,). (7)

Here V is the reactor volume, ¢, the molar heat capacity, ¢, the molar density, y the
surface heat transfer coefficient, S the surface area and 7, the temperature of the
surroundings to which heat is transferred by newtonian cooling: the difference
AT = T—T, represents the temperature excess or degree of self-heating.

(@) Dimensionless quantities

For the flow reactor model in the previous paper, a natural measure of
concentration presented itself: the inflow concentration of species A. This could then
be combined with the autocatalytic rate constant k, to produce a natural chemical
timescale. To follow a similar route here, we need again to find some appropriate
measure of concentration, and also will need a natural temperature scale.

In a typical experiment, we might consider an initial state of pure P (or a solution
of P) with some initial concentration p,. Using p, as our base for concentration, p/p,
will decay slowly from unity. If, however, A and B are reactive intermediates, their
concentrations will typically remain many orders of magnitude lower than p,. Thus
a/p, and b/p, will always be very small quantities. Also, the chemical timescale given
by 1/(k, p3) will be very short, so our dimensionless time k, p2¢ will have large values.

A more appropriate choice can be formed from the reaction rate constants for the
competing autocatalyst production and removal steps (1) and (2). k, is a (pseudo)
third-order rate constant so has units of concentration™ s™!, whereas the first-order
k, has units of s™1. The quotient (k,/k,) therefore has units of concentration and we

take this as our reference c,.;. Thus we have three dimensionless concentrations:

m= p/cref = (kl/kz)%p’ @& = a/cref = (kl/kz)%a” a’nd ﬂ = b/cref = (kl/kz)%b (8)

We shall see that this choice is indeed appropriate as a and # will be of order unity
in the parameter ranges of interest. As argued above, 7 will be a large quantity
because p is typically orders of magnitude greater than c,.

Using the same reference concentration for the chemical timescale we find
ten = 1/(k, c2sy) = k3", ie. the autocatalyst decay reaction provides the natural
timescale on which to judge slow or fast processes. Thus we take

T="kyt, k,=ky/ky, and «,=ky/k,, 9)

where «, and «, are dimensionless rate constants for the uncatalysed and reactant
decay steps. If the latter are to be relatively slow processes then «,,xy < 1. We may
also remember that «, is a function of temperature in the non-isothermal model.

To cope with the effects of self-heating, we may recast the heat balance equation
in terms of the temperature excess AT rather than the absolute temperature itself.
To make this dimensionless we can use the form most appropriate in thermal
explosion theory and scale AT by RT?/E to give 6 = EAT/RT?. With this and
introducing ¢, and ¢, two final dimensionless quantities emerge:

d= chefE/cpcoRT:

is a dimensionless adiabatic temperature rise based on the reference concentration

Phil. Trans. R. Soc. Lond. A (1990)
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54 8. K. Scott and A. S. Tomlin

and; y = xS/k, Ve, ¢, is a dimensionless newtonian cooling coefficient. The actual
maximum temperature rise in any given system is related to the initial concentration
of reactant P and is given by 0,, = om,.

With these various forms, the reaction rate and heat balance equations become

dm/dr = — k() 7, (10)
da/dr = k,(6) m— > — K, a, (11)
dB/dr = af+k, o —p, (12)
d6/dr = 88— 0. (13)

The form «,(f) emphasizes the temperature dependence of the initiation process. For
the Arrhenius rate-law we have this explicitly as

Ko(0) = Ko nexp{0/(1+eb)}, (14)

where «, , is the value of «, with k, evaluated at the ambient temperature and
e=RT,/E.

Equations (10)—(14) are almost in the form we shall use, but some further reduction
is appropriate as we see below. The initial conditions for the system are

m=m, a=p£=0 at 7=0. (15)

(b) Orders of magnitude

As stated above, the choices of dimensionless groups ensure that o and £ remain
of order unity for ‘interesting’ parameter values. The dimensionless reactant
concentration 7 is a large quantity initially, 7, > 1. However, 77 only occurs in the
governing equations multiplied by the parameter «, ,: this is the dimensionless rate
constant for the initiation step and will be small for a slow decay, i.e. k, , < 1. Thus
the product «, , 7 may be of order unity during the initial stages of the reaction and
we replace this by the new dimensionless parameter u = (k2 k,/k2)} p. Equation (10)
then becomes

dp/dr = —K,(0) p, (16)

with 4 = pu, at 7 = 0. Notice that the right-hand side is still multiplied by the small
parameter «,. Provided we are dealing with systems that do not have high extents
of self-heating, and «, does not increase much beyond «, , at any stage, we may apply
the ‘pool chemical approximation’ to this form of the dimensionless reactant
concentration. As long as u, stays of order unity as «, , tends to zero, we can take
in this limit

M = py = const. (17)
Physically, we are neglecting reactant consumption : this clearly cannot hold for long
times, but is appropriate with the above conditions for early dimensionless times,
7R O(KyY). |

If we substitute for u, into equation (11) we obtain

do/d7 = pyexp{0/(1+e0)} —apf?—«k,a. (18)

The Arrhenius temperature dependence here is a highly nonlinear, and somewhat
awkward, form and there is much advantage in simplifying it where possible. If

Phil. Trans. R. Soc. Lond. A (1990)
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Non-isothermal chemical systems 55

the initiation step has a reasonably high activation energy, say 80 kJ mol™! and
T, = 300 K, the group e will be rather small, ¢ & 1072, Provided the dimensionless
temperature excess does not become large, the product ef in the exponential
argument will remain small compared with unity in the denominator. We can thus
invoke the ‘exponential approximation’ replacing exp{6/(1+¢6)} by e’. Elsewhere
Gray & Kay (1990) use an alternative reduction, appropriate to situations where
0 itself always remains small compared with unity. They replace the Arrhenius
exponential with a linear term u(1+ 86). This also leads to important results and we
discuss their implications later.

(€) Dimensionless equations

With the various reductions and approximations detailed above, the governing
equations for the concentrations of A and B and for the temperature excess become

da/dr = pye’ —af?—«, a, (19)
dg/dr = aft+k,a—p, (20)
do/dr = 8 —y0. (21)

Chemistry is coupled to the temperature through the heat release term 64 in equation
(21) and the self-heating feeds back to the kinetics by ‘forcing’ the initiation step
P — A. The classic two variable autocatalator can be derived as a special case of this
more general three-variable scheme. '

Two such limiting cases, with similar mathematical consequences, can be
encapsulated in the limit /8 — co. Large values for the newtonian cooling coefficient
imply either slow chemistry (k, small) or a high heat transfer coefficient y or surface
to volume ratio. Perhaps more realistic is the limit & - 0, which implies a low specific
exothermicity compared with a high specific heat capacity, such as pertains in dilute
aqueous solutions. In these cases any initial temperature excess decays quickly and
0 generally remains close to zero for all remaining times. (This is not always true for
large v when the above limit can be satisfied even when 8 is not small: then there can
be significant transient temperature excursions.)

Because we intend to look at low exothermicities where the temperature excess 0
will remain small, we shall rescale 6 in equations (19)—(21) and define a new variable
¢ = 0/8. The scheme now becomes

do/dr = pye?? —af—k, a, (22)
dg/dr = aft+«k,0—p, (23)
dg/dr = f—y¢. (24)

Reduction to the two variable scheme is now automatic as § >0 and e’ — 1.

3. Stationary states and Hopf bifurcations for isothermal reaction scheme

Before proceeding with the analysis of the full three-variable system it is worth
summarizing the responses of the simpler two-variable kinetic model in the absence
of temperature effects (Merkin ef al. 1986, 1987). We shall see that the latter provides
an excellent first guide to the former in the important experimental situation where
only small extents of self-heating are likely.

Phil. Trans. R. Soc. Lond. A (1990)
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56 S. K. Scott and A. S. Tomlin

(6)

s I

Figure 1. Steady-state profiles showing the variation of « and # with # the bifurcation parameter.
Also shown are the Hopf bifurcation points and the locus of limit cycles which emerge. At the value
of «, chosen (k, = 1.0 x 107%) the locus forms a ‘canard’ shape.

The classic, two-variable autocatalator is described by the coupled reaction rate
equations
da/dr = py—of?—«k, a, (25)

dg/dr = af?+«k,0—pf. (26)

The stationary-state solutions for the isothermal system, equations (25) and (26)
are given simply by
Ogs = ﬂ/(ﬂ2+Ku)’ ﬂss =M. (27)

These forms are plotted as a function of the dimensionless reactant concentration
(from which we have dropped the subscript for convenience) in figure 1a, b. The
concentration of species A shows a maximum of ,? at s = «,: the two loci cross for
ae = P = = (1—k,,)%. For a small value of the dimensionless uncatalysed reaction
rate constant, the crossing occurs when the concentrations are close to unity, as we
hoped with our scalings.

The stationary-state solution may become locally unstable for some range of u.
The upper and lower ends of this range are given by Hopf bifurcation points, uf ,.
Using the method from the previous paper, these are located as

(f5)? = H1—2k, + (1— 8k, )3, (28)

and these are real provided «, < 3.

These points are marked in figure 1 for a particular choice, «, = 1.0 x 1072 giving
uE=10x10"% and u¥ =0.997. Also shown is the evolution of the oscillatory
amplitude in terms of the maximum and minimum attained by « and g on the
corresponding limit cycle as a function of x#. An important feature here is the rapid
growth in amplitude as px decreases, slightly below the upper Hopf point: this is
known as a ‘canard’.

4. Three-variable scheme with self-heating
(a) Stationary states
The stationary-state solutions of equations (22)—(24) are given by

bss = Bss/ Vs %5 = ﬂss/(ﬂgs_'_’(u)’ (29)

Phil. Trans. R. Soc. Lond. A (1990)
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{a)

(©)

T
" V)8 e

Figure 2. A comparison of the steady-state curves for the three models discussed in the text. (a)
The exponential approximation e” showing multistability; (b) the linear approximation of
Gray & Kay (1990) (1+00); (c) the two-variable isothermal model. Both the latter cases have a
unique single steady state.

where g is a solution of

Mm= ﬂss exp ( _8ﬂss/7)- (30)

The stationary-state locus f(#) is shown in figure 2 in comparison with the linear
relation (27) appropriate to the isothermal scheme and the curve g, = u/[1—(du/y)]
for the Kay & Gray equations.

The non-isothermal scheme shows multiple stationary states for low g and a
thermal explosion as the reactant concentration increases: the latter corresponds to
the turning point in the locus that occurs at 4 = y/de. For 4 < y/de, then, the system
has one stationary state with S, < y/d and one with g > y/d. It is the lower of
these two branches that is important to this study.

(b) Local stability and Hopf bifurcation for three-variable systems

The local stability of a given stationary state to infinitesimal perturbations is now
determined by the three eigenvalues of the (3 x3) jacobian matrix of equations
(22)—(24) evaluated at that state. For the present scheme, the eigenvalues are given
by the roots of the cubic equation

AB+bA%+cA+d =0, (31)
where
= 1+ B+ K, +y =205/ (B tru): ¢ = (Be+r,)(L+7y)+y =275/ (B +Ky)
and d = (f%+«k,)?2(y—0B) (32)

If all three roots are negative or have negative real parts, the stationary state will
be locally stable: if any has a positive real part the solution will be unstable.

On the upper branch of stationary states, df, >y and so the coefficient d in
equation (31) is negative. This means that one root must be real and positive. The
upper branch consists of (unstable) saddle points.

On the lower branch, 68, <y and d is positive, so one real root is negative. The
other roots may be real or form a complex pair. Hopf bifurcation requires the real

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 3. Bifurcation diagrams showing variation in maximum value of concentration § during
oscillation with x. In both cases y = 1.0, = 0.1: (a) «, = 5.0 x 1072, small amplitude oscillations;

(b) k, = 7.0 x 1073 showing steeply rising amplitude close to the upper Hopf point and the ‘canard’
shape.
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Figure 4. Bifurcation diagrams showing the appearance of ‘bubbles’ of higher and higher period
oscillations as the heat transfer coefficient decreases. In all cases k, = 5.5x107% and ¢ = 0.1.
(a) ¥ = 1.0 showing a locus of simple period one oscillations; (b) v = 0.7, a region of period-2
oscillations has now appeared for some values of u; (c) y = 0.65, further ‘bubbles’ of period-4
solutions have arisen and when vy reaches 0.5 a full cascade to chaos can be achieved.
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part of such a complex pair to pass through zero. In terms of the coefficients in
equation (31) this condition can be expressed as

be = ad, (33)
with d > 0.

Although equations (32) and (33) cannot be combined to give any useful analytical
result in general, limiting forms can be established. In the isothermal limit, 6 — 0, the
cubic equation factorizes to give A = —y and the quadratic appropriate to the
isothermal scheme of §3. The condition for Hopf bifurcation is then given by
equation (28). So for small § this can be used as a good approximation to the Hopf
condition for the non-isothermal scheme.

For «,, = 0 (no uncatalysed step), the upper Hopf point lies below the saddle-node

turning point only if .
O<[y(L+y)k (34)

This gives a good guide to the conditions where two Hopf points exist in the case
where «, is small.

In general, however, we rely on computational methods to determine the Hopf
points u* for a given set of parameters («,,d,7v). Using the path-following routine
AUTO (Doedel 1986) we can also follow the emerging oscillatory solutions. In all
cases the Hopf bifurcations are supercritical. The limit cycles that emerge will
therefore be stable in the regions close to the bifurcation points. In certain parameter
ranges, however, the limit cycle between two Hopf points can become unstable.
These instabilities can arise in several ways and path-following techniques can be
used to locate these further bifurcations.

5. Oscillatory solutions and their development
(a) Simple periodic solutions

We have stated in the previous section that it is possible to have zero, one or two
Hopf bifurcation points in our bifurcation diagram. The results in this section will be
concerned with the latter of these cases: that which involves two Hopf points with
a region of stationary-state instability between them. Oscillatory solutions emerge
from these bifurcations and path following enables their behaviour to be followed
away from the Hopf points. The simplest case has a stable period-1 solution across
the whole region between the two Hopf bifurcations. Choosing a relatively large
value for «,, the rate for the uncatalysed step, the locus of limit cycles forms an
egg shape in the f—y plane. An example of these limit cycles in figure 3a is for
y =10, §=0.1 and «, = 5.0 x 1072, At lower uncatalysed reaction rates, e.g. for
k, = 7.0x 1073 (figure 3b), the locus develops a ‘canard’. When we come to study
more complex dynamics in the following sections we will discover that it is these
smaller values of «, that are the most interesting. The bifurcations to higher-period
oscillations will be seen to occur in the region of steeply rising amplitude below the
upper Hopf point.

(b) Period-doubling sequences and ‘bubbling’ patterns

In this section we shall look at the influence of the heat transfer parameter y on
the dynamics of the system. If we choose the parameter values «, = 5.5x 107%,
4= 0.1 and y = 1.0 we see a series of limit cycles forming a canard shape, figure 4a,
similar to that seen in the isothermal system. These limit cycles represent simple

period-1 oscillations. For smaller values of y, corresponding to slower heat loss, this

Phil. Trans. R. Soc. Lond. A (1990)


http://rsta.royalsocietypublishing.org/

A\

Py
R

JA

L3

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY L}

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Non-isothermal chemical systems 61
5 ¢ @] [ ¢ o)
B [

Figure 6. Three-dimensional diagrams of the attractors and limit cycles corresponding to the traces
in figure 5. (a) u = 0.65, period-2 limit cycle; (b) 4 = 0.687, the period-2 limit cycle has gradually
split to form a period-4 attractor; (¢) u = 0.695, a chaotic attractor showing the characteristic
folding feature. Notice that the attractor is not fully three dimensional but is locally planar in
nature.

branch of limit cycles becomes unstable for certain values of the bifurcation
parameter 4. With y = 0.7 a pair of period-doubling bifurcations has appeared and
a branch of period-2 oscillations exists between them as shown in figure 4b. The
maximum amplitude of the peaks is no longer repeated every oscillation, but every
two oscillations.

Decreasing y further to 0.65 we see the period-2 oscillations bifurcate by period
doubling, and a branch of period-4 oscillations appears (figure 4b). The bifurcation
diagrams now show clearly the appearance of ‘bubbling’ patterns. For this value of
v, as we change the precursor concentration u we shall see a sequence of oscillations
of the following kind:

period 1 — period 2 — period 4 — period 2 — period 1.

More and more of these bubbles with higher periodic solutions appear as vy is
decreased further, and by v = 0.5 a full cascade to chaotic oscillations has been
achieved. This period doubling cascade is a well-documented route to chaotic
behaviour and is seen in many dynamical systems (Feigenbaum 1980). The time
traces in figure 5a—c show part of the period doubling sequence leading to a chaotic
trace (d) on increasing u. This is followed by a reverse period doubling sequence at
higher reactant concentrations, figure 5g—, returning to (small amplitude) period-1.

Figure 6 shows how the limit cycle splits as the period doubles and shows the
typical folding and locally planar characteristics of the chaotic attractor produced.
Another feature of such chaotic regions is the appearance of periodic windows. In
figure 5¢ we see that a window of period-3 oscillations appears at u = 0.696, a
parameter value within the chaotic band. Other periodic windows will also exist but
over much narrower parameter ranges and so will be more difficult to detect. Figure
7 shows a successive maxima plot for the chaotic attractor. This is produced by
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Figure 7. Next maxima plot of z,,, against ,, for # that corresponds to the
chaotic attractor shown in figure 6.

plotting the maximum value of § for each peak in the time trace against the previous
maximum. The points gradually fill out a humped shape map. This map is a
characteristic feature of such a chaotic attractor.

(¢) Mixed-mode oscillations

For certain parameter values the simple period-1 limit cycle found in this model
can lose stability in another way. This is by a bifurcation to ‘mixed mode’
oscillations. By the term ‘mixed mode’ we mean a solution which is a combination
of large-amplitude relaxation type oscillations and any number of small oscillations
separating the large excursions. A sequence of time traces of these kind of oscillations
is shown in figure 8. They have also been seen in many experimental situations, such
as the Belousov-Zhabotinsky reaction and the spontaneous oxidation of hydrogen.

If we study the sequence shown in figure 8, we see that as the bifurcation
parameter g is increased, the number of small-amplitude oscillations between each
large peak increases. This kind of progression has been noted in experimental
situations. Eventually when p is increased to a value of 0.5586, the number of small
peaks between each large one no longer remains constant. A chaotic attractor has
been formed although it is of a different nature to the one in the previous section. A
further increase in g will result in the disappearance of the large peaks altogether and
a small amplitude attractor will be left behind which is still aperiodic. Periodicity
returns for larger u, with period-1 traces reappearing at the end of a reverse period
doubling sequence similar to the one shown in figure 5. Another feature of these
sequences of mixed-mode oscillations, is that as the number of small oscillations
between the large peaks increases, the parameter regions in which they are found
become narrower. Thus the region with alternate small and large peaks will be more
easily found than the region with say one large and three small peaks.

To understand the kind of trajectory which we see in this region of complex
oscillations, it will be helpful to refer back to the two variable model. As discussed
previously if we let § -0 then the temperature variable ¢ or 6 becomes decoupled
from the concentrations. For values of g between the two Hopf points of the
corresponding isothermal system, « and /£ still oscillate. If we choose u to be close to
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O Figure 9. Responses in the pe* —a— f§ plane with y = 0.05, x, = 1.0 X 1072, (@) Limit cycles for the
am ©) isothermal system, § = 0, for values of u between 0.85 and 1.0; (b) the full three-dimensional system
=w with & = 0.025 and x = 0.558, showing the corresponding spiral attractor with ge’ oscillating

between approximately 0.85 and 1.0.
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Figure 10. Evolution of dimensionless temperature excess ¢ for y = 0.05, «, = 1.0x 107® and
# = 0.558. (a) ‘Isothermal’ case with ¢ decoupled showing sharp rise and almost exponential
decay; (b) the exponential decay is altered when the temperature excess is recoupled into the
system with & = 0.025.

the upper Hopf point, then the amplitude of the oscillations will be small. As the

value of u is decreased then the limit cycle will grow in a canard shape as shown

| earlier. Away from the Hopf point the amplitude will begin to increase quickly until

™ large oscillations are reached (Merkin et al. 1987). A sequence of these limit cycles for

various values of u is shown in figure 9a. The dimensionless temperature excess ¢ also

oscillates, driven by # with some phase-lag, but does not feedback to the chemistry.

Figure 10a shows a typical temperature trace for 4 = 0.558: ¢ increases sharply and
then decays exponentially during each oscillation.

To illustrate the influence of the temperature effect on the full scheme we consider
recoupling ¢ by allowing J§ to increase from zero, still with g = 0.558, which lies
within the mixed mode region. By recoupling the equations what we are effectively
doing is replacing the parameter x in the decoupled system by the term pe’?. We are
adding an internal forcing to the system. The terms ¢ and, equivalently, x e’ no
longer show a simple exponential decay in each oscillation. This time as ¢’ decays
it effectively winds around the limit cycles in figure 9a. We now see a spiral-shaped
attractor in three dimensions, and an example of this is shown in figure 95.

When p e’ reaches a low enough value then the limit cycle becomes large again.

\

Y |

~d
|

THE ROYAL A
SOCIETY

Phil. Trans. R. Soc. Lond. A (1990)

PHILOSOPHICAL
TRANSACTIONS
OF



http://rsta.royalsocietypublishing.org/

b

THE ROYAL A
SOCIETY /)

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY LA

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Non-isothermal chemical systems 65
200§ ¥ 200y ¥
B
0 0
200 time 500
200 | 2004, @
B
0 ‘ 0

Figure 11. More complex patterns found in the ‘mixed-mode’ region. y = 0.05,
8=10.025, k, = 1.0x 107, (a) g = 0.50; (b) u = 0.505; (c) u = 0.51.

A sharp peak in f then causes ¢ to increase very sharply and the trajectory moves
away from its stable manifold. The effective initiation rate u e’ is driven up to its
maximum value from which it begins to spiral down again. Figure 9a, b shows a very
good correspondence between the size of the limit cycles in the two variable case and
the size of the spirals in the non-isothermal system. Obviously the lower the value of
u in the three-variable system, the lower the maximum value of xe* will be. This
means that the trajectory will pass through fewer spirals as pe* decays. Here we
have some indication as to why the number of small peaks between each large one
increases with increasing u.

On first glance at this complex region it would seem that the period of oscillations
increases gradually with x, in direct contrast with the period doubling case.
However, if we take a close look at the regions between each simple period oscillation
we find even more complications. For example, if we study the region between the
period-1 and the period-2 patterns we find a mixture of the two states. Figure 11
shows an example of these more complex concatenations. In figure 115 we have three
large oscillations followed by a small peak and then two large ones followed by a
small peak. Similar complexities appear between each of the other simpler periodic
patterns although over much smaller parameter regions.

We see that the period of the oscillations does not vary in a simple way as first
appeared. The more complex patterns have a larger repeating group and therefore a
longer period than the simple ones. However, even considering these complex
patterns we still see an increasing number of small oscillations per large peak as we
follow a sequence. If we calculate the ratio of small to large peaks we find that it
increases in a stepwise manner as the bifurcation parameter increases.

Discussion and Conclusions

We have seen how an isothermally oscillating chemical reaction can be perturbed
by a second feedback system. In this particular example we have considered a
thermal effect as the source of this feedback, but in general this could also be
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provided by chemical autocatalysis or inhibition (Hudson & Réssler 1984). Gray &
Aarons (1974) considered a one-variable chemical model and showed that small
temperature variations there could produce what they termed ‘ parasitic oscillations’.
In the present model, the self-heating leads to complex oscillations and parasitic
chaos. The amount of self-heating required to produce these complexities need not
be large, as we shall see.

We can estimate the actual magnitude of the temperature excursions in the
following way. In terms of our variables, the degree of self-heating is given by
AT = ORT?/E = §¢RT?/E. For chemical systems at room temperature we have
T. =300 K and may take a representative activation energy £ = 90 kJ mol™'.
Taking a typical value for the dimensionless temperature excursion from figure 4, we
see 0 = 8¢ = 0.1. Thus the maximum temperature excess is less than 1 K for this
example. In fact there is no reason to suppose there will be a minimum degree of self-
heating capable of inducing complex oscillatory or aperiodic behaviour and this
influence may well be too small to be detected directly. Nevertheless its effect can be
observed as the chemistry acts in some sense as a (nonlinear) amplifier.

The feedback studied here has a nonlinear form g e’ so as to mimick the chemical
situation of an Arrhenius temperature dependence. As Gray & Kay (1990) show
elsewhere, this nonlinearity is not required mathematically to produce complex
traces. All of the oscillatory waveforms and sequences amongst them presented
above, can be obtained with the simple linear coupling x(1+6). In the latter case
there is only a unique stationary state, which confirms that the saddle point solution
(upper branch) in the present model does not have a determining influence on the
changes in the oscillatory dynamics. In both cases, the observed three-dimensional
behaviour can be immediately understood in terms of the underlying structure
provided by the two-variable isothermal model. If the effective value of the initiation
rate, i.e. pe’, is varying across a range for which the amplitude of the oscillation in
the isothermal scheme is particularly sensitive to g, i.e. near the canard, the resulting
response will naturally have a mixed-mode character.

This link can be made formally by considering the governing equations for a
weakly exothermic system with relatively slow heat transfer (6,y < 1). Introducing
the new parameters eA = § and ef” = y where A and " are of order unity and ¢ < 1,
and a new (slow) timescale 7" = er, equations (19)—(21) can be written in the form

eda/dT = pe’—apt—«, o,

edf/d? = o’ +x, 00— f
and do/dT = Ap—T0.
The appearance of the small parameter multiplying the derivatives da/d7" and
dp/dT means that for most of the evolution of the system the concentrations change
on a faster timescale than the temperature excess, allowing the term pe? to be
considered as a slowly varying parameter.

An alternative special case, also of practical interest, is that of a highly exothermic
reaction competing with a high heat transfer coefficient (6,7 > 1). Now, using
A =¢ed and I"=e¢ey with A,I" ~ O(1) and ¢ <€ 1, the governing equations have the
form da/dr = pe’ —aft—k, a,
dg/dr = api+k,a—pf
and edf/dr = Ap—T0.
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Now the temperature is the fast variable. We can expect 6 to adjust rapidly until

0=AB/T"=5p/v,

so the temperature excess will closely follow the autocatalyst concentration. With
these scalings we can expect the behaviour of the three-variable system to be closely
related to the two-variable subscheme

da/dr = pe®” —aft—k, a
and dg/dr = aft+x,0—pf.

This model has successfully reproduced two of the common routes from periodic
oscillations to chaos observed in many chemical (and other physical, engineering and
biological) systems. One of these, the period-doubling sequence, is relatively familiar.
The other is not easily characterized. It appears to have some of the hallmarks of
intermittency (itself a rather ill-defined process) but not conclusively so. Other routes
observed in other systems involve quasiperiodic responses corresponding to motion
on a torus in the phase-plane. We have not found such behaviour in the present
model over the parameter ranges investigated, but it may be relevant under other
conditions.

Much of the analysis performed in this study has relied on the existence of
stationary-state solutions or ‘invariant attractors’ such as limit cycles. These are
somewhat artificial as they rely on the pool chemical approximation that effectively
ignores reactant consumption. In fact we know that our thermodynamically closed
system must tend irrevokably towards the corresponding state of chemical
equilibrium, and that this must be a stable state. Eventually, therefore, all ‘exotic’
behaviour including even simple period-1 oscillations must die out. The different
responses discussed in the previous sections may still be important, however. They
will help determine the transient behaviour that accompanies this evolution from the
initial conditions to the equilibrium state. The isothermal model with a decaying
reactant concentration has been considered by Merkin et al. (1987). For the non-
isothermal scheme here, the situation will be qualitatively similar although more
complex. The reactant concentration no longer follows a simple exponential decay as
the rate of step (0) now depends on the (varying) temperature. Selected computations
with a slow reactant consumption included have been made and do indeed show the
system traversing through complex time-dependent sequences characteristic of the
sustained oscillations of the forms observed above.
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comments on this work. We also thank the SERC (A.S.T.) and NATO (S.K.S. grant no. 0124/89)
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